Modified Korteweg-de Vries-Burgers Equation
Overview
This is a modified version of the mKdV equation where we included the diffusion term $u_{xx}$. The equation is defined by
\[u_t + \alpha u_{xxx} + \beta u^2u_{x} + \gamma u_{xx} = 0\]
Model
The Modified Korteweg-de Vries-Burgers equation becomes a cubic model:
\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{G}(\mathbf{u}(t) \otimes \mathbf{u}(t) \otimes \mathbf{u}(t)) + \mathbf{Bw}(t)\]
or
\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{E}(\mathbf{u}(t) \oslash \mathbf{u}(t) \oslash \mathbf{u}(t)) + \mathbf{Bw}(t)\]
where
- $\mathbf{u}\in\mathbb{R}^N$: the state vector
- $\mathbf{w}\in\mathbb{R}^m$: the input vector
- $\mathbf{A}\in\mathbb{R}^{N\times N}$: the linear state matrix
- $\mathbf{G}\in\mathbb{R}^{N\times N^3}$: the cubic state matrix with redundancy
- $\mathbf{E}\in\mathbb{R}^{N\times N(N+1)(N+2)/6}$: the cubic state matrix without redundancy
- $\mathbf{B}\in\mathbb{R}^{N\times m}$: the control input matrix
Numerical Integration
For the numerical integration we consider two methods:
- Semi-Implicit Euler (SIE)
- Crank-Nicolson Adam-Bashforth (CNAB)
For the exact expressions of the time-stepping check Allen-Cahn equation.
Example
using CairoMakie
using LinearAlgebra
using PolynomialModelReductionDataset: ModifiedKortewegDeVriesBurgersModel
# Setup
Ω = (0.0, 3.0)
Nx = 2^8; dt = 1e-3
mKdV = ModifiedKortewegDeVriesBurgersModel(
spatial_domain=Ω, time_domain=(0.0, 3.0), Δx=(Ω[2] + 1/Nx)/Nx, Δt=dt,
params=Dict(:a => 1, :b => 3, :c=> 0.1), BC=:dirichlet,
)
DS = 100
mKdV.IC = 2 * cos.(2π * mKdV.xspan / (Ω[2] - Ω[1])) # + 0.5 * cos.(4π * mKdV.xspan / (Ω[2] - Ω[1]))
Ubc1 = 0.5ones(1,mKdV.time_dim)
Ubc2 = -0.5ones(1,mKdV.time_dim)
Ubc = [Ubc1; Ubc2]
# Operators
A, E, B = mKdV.finite_diff_model(mKdV, mKdV.params)
# Integrate
U = mKdV.integrate_model(
mKdV.tspan, mKdV.IC, Ubc;
linear_matrix=A, cubic_matrix=E, control_matrix=B,
system_input=true, integrator_type=:CNAB,
)
# Surface plot
fig3, _, sf = CairoMakie.surface(mKdV.xspan, mKdV.tspan[1:DS:end], U[:, 1:DS:end],
axis=(type=Axis3, xlabel=L"x", ylabel=L"t", zlabel=L"u(x,t)"))
CairoMakie.Colorbar(fig3[1, 2], sf)
fig3

# Flow field
fig4, ax, hm = CairoMakie.heatmap(mKdV.xspan, mKdV.tspan[1:DS:end], U[:, 1:DS:end])
ax.xlabel = L"x"
ax.ylabel = L"t"
CairoMakie.Colorbar(fig4[1, 2], hm)
fig4

API
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.ModifiedKortewegDeVriesBurgersModel
— Typemutable struct ModifiedKortewegDeVriesBurgersModel <: AbstractModel
Modified Korteweg-de Vries-Burgers equation model
\[\frac{\partial u}{\partial t} = -\alpha\frac{\partial^3 u}{\partial x^3} - \beta u^2\frac{\partial u}{\partial x} + \gamma\frac{\partial^2 u}{\partial x^2}\]
Fields
spatial_domain::Tuple{Real,Real}
: spatial domaintime_domain::Tuple{Real,Real}
: temporal domainparam_domain::Tuple{Real,Real}
: parameter domainΔx::Real
: spatial grid sizeΔt::Real
: temporal step sizeBC::Symbol
: boundary conditionIC::Array{Float64}
: initial conditionxspan::Vector{Float64}
: spatial grid pointstspan::Vector{Float64}
: temporal pointsspatial_dim::Int64
: spatial dimensiontime_dim::Int64
: temporal dimensionparams::Union{Real,AbstractArray{<:Real}}
: parameter vectorparam_dim::Int64
: parameter dimensionfinite_diff_model::Function
: model using Finite Differenceintegrate_model::Function
: model integration
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers
— ModuleModified Korteweg-de Vries-Burgers (mKdVB) equation
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.finite_diff_dirichlet_model
— Methodfinite_diff_dirichlet_model(N, Δx, Δt, params)
Finite Difference Model for the Gardner equation with Dirichlet boundary condition (Non-conservative).
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.finite_diff_model
— Methodfinite_diff_model(model, params)
Finite Difference Model for mKdV equation
Arguments
model::ModifiedKortewegDeVriesBurgersModel
: mKdV modelparams::Real
: params including a, b, c
Returns
- operators
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.finite_diff_periodic_model
— Methodfinite_diff_periodic_model(N, Δx, params)
Generate A and E matrices for the Gardner equation for periodic boundary condition (Non-conservative).
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.integrate_model
— Methodintegrate_model(tdata, u0)
integrate_model(tdata, u0, input; kwargs...)
Integrate the mKdVB model using Semi-Implicit Euler (SIE) or Crank-Nicolson Adam-Bashforth (CNAB) scheme with or without control
Arguments
tdata::AbstractArray{T}
: time datau0::AbstractArray{T}
: initial conditioninput::AbstractArray{T}=[]
: input data
Keyword Arguments
linear_matrix::AbstractArray{T,2}
: linear matrixcubic_matrix::AbstractArray{T,2}
: cubic matrixcontrol_matrix::AbstractArray{T,2}
: control matrixsystem_input::Bool=false
: system input flagconst_stepsize::Bool=false
: constant step size flagu3_jm1::AbstractArray{T,2}
: cubic matrix at j-1integrator_type::Symbol=:CNAB
: integrator type
Returns
u::Array{T,2}
: integrated model states
Notes
- If
system_input
is true, thencontrol_matrix
is required - If
const_stepsize
is true, then the time step size is assumed to be constant - If
u3_jm1
is provided, then the cubic matrix at j-1 is used in the integration - The integrator type can be either Semi-Implicit Euler (SIE) or Crank-Nicolson Adam-Bashforth (CNAB)
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.integrate_model_with_control_CNAB
— Methodintegrate_model_with_control_CNAB(
tdata,
u0,
input;
linear_matrix,
cubic_matrix,
control_matrix,
const_stepsize,
u3_jm1
)
Crank-Nicolson Adam-Bashforth (CNAB) scheme with control
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.integrate_model_with_control_SIE
— Methodintegrate_model_with_control_SIE(
tdata,
u0,
input;
linear_matrix,
cubic_matrix,
control_matrix
)
Semi-Implicit Euler (SIE) scheme with control
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.integrate_model_without_control_CNAB
— Methodintegrate_model_without_control_CNAB(
tdata,
u0;
linear_matrix,
cubic_matrix,
const_stepsize,
u3_jm1
)
Crank-Nicolson Adam-Bashforth (CNAB) scheme without control
PolynomialModelReductionDataset.ModifiedKortewegDeVriesBurgers.integrate_model_without_control_SIE
— Methodintegrate_model_without_control_SIE(
tdata,
u0;
linear_matrix,
cubic_matrix
)
Semi-Implicit Euler (SIE) scheme without control