Fisher-KPP Equation

Overview

The Fisher-KPP equation, also known as the Fisher equation or the Kolmogorov-Petrovsky-Piskunov equation, is a fundamental nonlinear partial differential equation (PDE) in mathematical biology. It models the spread of an advantageous gene in a population or, more generally, the propagation of a biological or chemical species. Independently introduced by Ronald Fisher in 1937 and by Kolmogorov, Petrovsky, and Piskunov (KPP) in the same year, it combines diffusion and logistic growth to describe wave-like phenomena in population dynamics.

The one-dimensional Fisher-KPP equation is given by:

\[u_t = D u_{xx} + r u (1 - u)\]

Where:

  • $u(x, t)$ is the density of the species or the frequency of an advantageous gene at position $x$ and time $t$.
  • $D$ is the diffusion coefficient, representing spatial dispersal.
  • $r$ is the intrinsic growth rate of the population.

Key Features

  • Reaction-Diffusion System: Combines local reactions (logistic growth) and spatial diffusion.
  • Nonlinearity: The term $r u (1 - u)$ introduces nonlinearity, leading to complex dynamics like traveling waves.
  • Traveling Wave Solutions: Admits solutions of the form $u(x, t) = U(x - c t)$, representing waves propagating at constant speed $c$.

Physical Interpretation

  • Population Genetics: Models the spread of a beneficial gene through a spatially distributed population.
  • Ecology: Describes the invasion of a species into new territory.
  • Chemical Kinetics: Represents autocatalytic chemical reactions spreading through a medium.

Properties

Traveling Wave Solutions

  • Seeking solutions of the form $u(x, t) = U(z)$ with $z = x - c t$, the equation becomes an ordinary differential equation (ODE):

    \[-c \frac{dU}{dz} = D \frac{d^2 U}{dz^2} + r U (1 - U)\]

  • Boundary conditions for invasion problems are:

    \[U(-\infty) = 1, \quad U(\infty) = 0\]

  • Minimum Wave Speed:

    The minimum speed $c_{\text{min}}$ at which traveling waves propagate is:

    \[c_{\text{min}} = 2 \sqrt{D r}\]

Stability and Asymptotic Behavior

  • Stability of Traveling Waves: Waves traveling at speeds $c \geq c_{\text{min}}$ are stable.
  • Asymptotic Spread: The population front advances at speed $c_{\text{min}}$ over long times.

Linearization Near Zero

  • Near $u = 0$, the equation can be linearized:

    \[\frac{\partial u}{\partial t} \approx D \frac{\partial^2 u}{\partial x^2} + r u\]

  • Solutions grow exponentially if $u > 0$, leading to the invasion of the population.

Applications

  • Population Dynamics: Modeling species invasion, range expansion, and the spread of epidemics.
  • Genetics: Describing gene propagation in spatially structured populations.
  • Ecology and Conservation Biology: Understanding the impact of habitat fragmentation and corridors on species spread.
  • Chemical and Biological Waves: Studying flame propagation, neural activity, and reaction-diffusion systems.

Generalizations

  • Higher Dimensions: Extension to two or three spatial dimensions:

    \[\frac{\partial u}{\partial t} = D \nabla^2 u + r u (1 - u)\]

  • Heterogeneous Media: Incorporating spatially varying parameters $D(x)$ and $r(x)$.

  • Time-Delayed Reactions: Introducing delays in the reaction term to model maturation time.

Model

This equation is a quadratic model

\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{F}(\mathbf{u}(t) \oslash \mathbf{u}(t)) + \mathbf{Bw}(t)\]

Numerical Integration

For the numerical integration we consider two methods:

  • Semi-Implicit Crank-Nicolson (SICN)
  • Crank-Nicolson Adam-Bashforth (CNAB)

The time stepping for each methods are

SICN:

\[\mathbf{u}(t_{k+1}) = \left(\mathbf{I}-\frac{\Delta t}{2}\mathbf{A}\right)^{-1} \left\{ \left( \mathbf{I} + \frac{\Delta t}{2}\mathbf{A} \right)\mathbf{u}(t_k) + \Delta t\mathbf{F}\mathbf{u}^{\langle 2\rangle}(t_k) + \frac{\Delta t}{2} \mathbf{B}\left[ \mathbf{w}(t_{k+1}) + \mathbf{w}(t_k) \right]\right\}\]

CNAB:

If $k=1$

\[\mathbf{u}(t_{k+1}) = \left(\mathbf{I}-\frac{\Delta t}{2}\mathbf{A}\right)^{-1} \left\{ \left( \mathbf{I} + \frac{\Delta t}{2}\mathbf{A} \right)\mathbf{u}(t_k) + \Delta t\mathbf{F}\mathbf{u}^{\langle 2\rangle}(t_k) + \frac{\Delta t}{2} \mathbf{B}\left[ \mathbf{w}(t_{k+1}) + \mathbf{w}(t_k) \right]\right\}\]

If $k\geq 2$

\[\mathbf{u}(t_{k+1}) = \left(\mathbf{I}-\frac{\Delta t}{2}\mathbf{A}\right)^{-1} \left\{ \left( \mathbf{I} + \frac{\Delta t}{2}\mathbf{A} \right)\mathbf{u}(t_k) + \frac{3\Delta t}{2}\mathbf{F}\mathbf{u}^{\langle 2\rangle}(t_k) - \frac{\Delta t}{2}\mathbf{F}\mathbf{u}^{\langle 2\rangle}(t_{k-1}) + \frac{\Delta t}{2} \mathbf{B}\left[ \mathbf{w}(t_{k+1}) + \mathbf{w}(t_k) \right]\right\}\]

where $\mathbf{u}^{\langle 2 \rangle}=\mathbf{u} \oslash \mathbf{u}$.

Example

using CairoMakie
using LinearAlgebra
using PolynomialModelReductionDataset: FisherKPPModel

# Setup
Ω = (0, 3)  # Choose integers
T = (0.0, 5.0)
Nx = 2^8
dt = 1e-3
fisherkpp = FisherKPPModel(
    spatial_domain=Ω, time_domain=T, Δx=((Ω[2]-Ω[1]) + 1/Nx)/Nx, Δt=dt,
    params=Dict(:D => 1.0, :r => 1.0), BC=:dirichlet
)
DS = 10

# Create piecewise IC
a, b, c = (sort ∘ rand)(1:fisherkpp.spatial_dim, 3)
seg1 = ones(length(fisherkpp.xspan[1:a]))
seg2 = zeros(length(fisherkpp.xspan[a+1:b]))
seg3 = rand(0.1:0.1:0.5) * ones(length(fisherkpp.xspan[b+1:c]))
seg4 = zeros(length(fisherkpp.xspan[c+1:end]))
fisherkpp.IC = [seg1; seg2; seg3; seg4]

# Boundary conditions
Ubc1 = ones(1,fisherkpp.time_dim)
Ubc2 = zeros(1,fisherkpp.time_dim)
Ubc = [Ubc1; Ubc2]

# Operators
A, F, B = fisherkpp.finite_diff_model(fisherkpp, fisherkpp.params)

# Integrate
U = fisherkpp.integrate_model(
    fisherkpp.tspan, fisherkpp.IC, Ubc;
    linear_matrix=A, quadratic_matrix=F, control_matrix=B,
    system_input=true, integrator_type=:CNAB,
)

# Surface plot
fig3, _, sf = CairoMakie.surface(fisherkpp.xspan, fisherkpp.tspan[1:DS:end], U[:, 1:DS:end],
    axis=(type=Axis3, xlabel=L"x", ylabel=L"t", zlabel=L"u(x,t)"))
CairoMakie.Colorbar(fig3[1, 2], sf)
fig3
Example block output
# Flow field
fig4, ax, hm = CairoMakie.heatmap(fisherkpp.xspan, fisherkpp.tspan[1:DS:end], U[:, 1:DS:end])
ax.xlabel = L"x"
ax.ylabel = L"t"
CairoMakie.Colorbar(fig4[1, 2], hm)
fig4
Example block output

API

PolynomialModelReductionDataset.FisherKPP.FisherKPPModelType
mutable struct FisherKPPModel <: AbstractModel

Fisher Kolmogorov-Petrovsky-Piskunov equation (Fisher-KPP) model is a reaction-diffusion equation or logistic diffusion process in population dynamics. The model is given by the following PDE:

\[\frac{\partial u}{\partial t} = D\frac{\partial^2 u}{\partial x^2} + ru(1-u)\]

where $u$ is the state variable, $D$ is the diffusion coefficient, and $r$ is the growth rate.

Fields

  • spatial_domain::Tuple{Real,Real}: spatial domain
  • time_domain::Tuple{Real,Real}: temporal domain
  • diffusion_coeff_domain::Tuple{Real,Real}: parameter domain (diffusion coeff)
  • growth_rate_domain::Tuple{Real,Real}: parameter domain (growth rate)
  • Δx::Real: spatial grid size
  • Δt::Real: temporal step size
  • xspan::Vector{<:Real}: spatial grid points
  • tspan::Vector{<:Real}: temporal points
  • spatial_dim::Int: spatial dimension
  • time_dim::Int: temporal dimension
  • diffusion_coeffs::Union{AbstractArray{<:Real},Real}: diffusion coefficient
  • growth_rates::Union{AbstractArray{<:Real},Real}: growth rate
  • param_dim::Dict{Symbol,<:Int}: parameter dimension
  • IC::AbstractArray{<:Real}: initial condition
  • BC::Symbol: boundary condition
  • finite_diff_model::Function: model using Finite Difference
  • integrate_model::Function: integrator using Crank-Nicholson (linear) Explicit (nonlinear) method
source
PolynomialModelReductionDataset.FisherKPP.finite_diff_modelMethod
finite_diff_model(model, params)

Create the matrices A (linear operator) and F (quadratic operator) for the Fisher-KPP model. For different boundary conditions, the matrices are created differently.

Arguments

  • model::FisherKPPModel: Fisher-KPP model
  • params::Dict: parameters for the model
source
PolynomialModelReductionDataset.FisherKPP.integrate_modelMethod
integrate_model(tdata, u0)
integrate_model(tdata, u0, input; kwargs...)

Integrate the Fisher-KPP model using the Semi-Implicit Crank-Nicholson (SICN) method and Crank-Nicholson Adam-Bashforth (CNAB) method.

Arguments

  • tdata::AbstractArray{T}: time data
  • u0::AbstractArray{T}: initial condition
  • input::AbstractArray{T}=[]: input data

Keyword Arguments

  • linear_matrix::AbstractArray{T,2}: linear matrix
  • quadratic_matrix::AbstractArray{T,2}: quadratic matrix
  • control_matrix::AbstractArray{T,2}: control matrix
  • system_input::Bool=false: system input flag
  • const_stepsize::Bool=false: constant step size flag
  • u2_jm1::AbstractArray{T}=[]: previous state
  • integrator_type::Symbol=:CNAB: integrator type

Returns

  • u::Array{T,2}: integrated model states

Notes

  • The integrator_type can be either :SICN for Semi-Implicit Crank-Nicolson or :CNAB for Crank-Nicolson Adam-Bashforth
  • The system_input flag is set to false if no input is provided
  • The const_stepsize flag is set to false by default
  • The u2_jm1 is the previous state of the system
source