FitzHugh-Nagumo Equation

Overview

The Fitzhugh-Nagumo equation is a simplified mathematical model used to describe the behavior of excitable systems, particularly the dynamics of nerve cells or neurons. It was developed independently by Richard Fitzhugh and John Nagumo in the 1960s as a modification of the Hodgkin-Huxley model, aiming to capture the essential characteristics of action potential propagation.

The equation takes the form of a system of ordinary differential equations and consists of two main variables: a fast-recovery variable (usually denoted as v) and a slow-activating variable (usually denoted as w). The Fitzhugh-Nagumo equation is given by:

\[\begin{align*} \frac{dv}{dt} &= v - \frac{v^3}{3} - w + I \\ \frac{dw}{dt} &= \epsilon (v + a - bw) \end{align*}\]

where:

  • $v$: represents the membrane potential of the neuron.
  • $w$: represents a recovery variable related to the inactivation of ion channels.
  • $I$: is an external input current that stimulates the neuron.
  • $\epsilon$: is a positive parameter that controls the timescale separation between $v$ and $w$ dynamics.
  • $a$ and $b$ are constants that affect the equilibrium points and behavior of the system.

The Fitzhugh-Nagumo model simplifies the complex behavior of neurons, focusing on the interplay between the fast-responding action potential and the slower recovery process. This simplification makes it easier to analyze and understand the fundamental mechanisms underlying excitable systems. The Fitzhugh-Nagumo equation has been widely used in the study of neuronal dynamics, cardiac rhythm modeling, and other excitable phenomena, providing insights into the generation and propagation of electrical signals in various biological and physical contexts.

Model

The Fitzhugh-Nagumo model can be modelled as a quadratic-bilinear system after a process called lifting

\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{H}(\mathbf{u}(t) \otimes \mathbf{u}(t)) + \mathbf{Bw}(t) + \mathbf{Nu}(t)\mathbf{w}(t) + \mathbf{K}\]

or

\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{F}(\mathbf{u}(t) \oslash \mathbf{u}(t)) + \mathbf{Bw}(t)+ \mathbf{Nu}(t)\mathbf{w}(t) + \mathbf{K}\]

where

  • $\mathbf{u}\in\mathbb{R}^N$: the state vector
  • $\mathbf{w}\in\mathbb{R}^m$: the input vector
  • $\mathbf{A}\in\mathbb{R}^{N\times N}$: the linear state matrix
  • $\mathbf{H}\in\mathbb{R}^{N\times N^2}$: the quadratic state matrix with redundancy
  • $\mathbf{F}\in\mathbb{R}^{N\times N(N+1)/2}$: the quadratic state matrix without redundancy
  • $\mathbf{B}\in\mathbb{R}^{N\times m}$: the control input matrix
  • $\mathbf{N}\in\mathbb{R}^{N\times N}$: the bilinear matrix
  • $\mathbf{K}\in\mathbb{R}^{N}$: the constant matrix

For full details on the model see The MORwiki Community [4] and Qian et al. [5].

Numerical Integration

The numerical integration is handled by standard forward Euler scheme.

Example

This example is a reproduction of the example in Qian et al. [5].

using CairoMakie
using Kronecker: ⊗
using LinearAlgebra
using PolynomialModelReductionDataset: FitzHughNagumoModel

# Setup
Ω = (0.0, 1.0); dt = 1e-4; Nx = 2^9
fhn = FitzHughNagumoModel(
    spatial_domain=Ω, time_domain=(0.0,4.0), Δx=(Ω[2] - 1/Nx)/Nx, Δt=dt,
    alpha_input_params=500, beta_input_params=10,
)
α = 500; β = 10
g(t) = α * t^3 * exp(-β * t)
U = g.(fhn.tspan)'
DS = 100  # downsample rate

# Operators
Af, Bf, Cf, Kf, f = fhn.full_order_model(fhn.spatial_dim, fhn.spatial_domain[2])
fom(x, u) = Af * x + Bf * u + f(x,u) + Kf

# Integrate
X = fhn.integrate_model(fhn.tspan, fhn.IC, g; functional=fom)[:, 1:DS:end]

# Plot solution
fig1 = Figure()
gp = fhn.spatial_dim
ax1 = Axis(fig1[1, 1], xlabel="t", ylabel="x", title="x1")
hm1 = CairoMakie.heatmap!(ax1, fhn.tspan[1:DS:end], fhn.xspan, X[1:gp, :]')
CairoMakie.Colorbar(fig1[1, 2], hm1)
ax2 = Axis(fig1[1, 3], xlabel="t", ylabel="x", title="x2")
hm2 = CairoMakie.heatmap!(ax2, fhn.tspan[1:DS:end], fhn.xspan, X[gp+1:end, :]')
CairoMakie.Colorbar(fig1[1, 4], hm2)
fig1
Example block output

API

PolynomialModelReductionDataset.FitzHughNagumo.FitzHughNagumoModelType
mutable struct FitzHughNagumoModel <: AbstractModel

FitzHugh-Nagumo model

\[\begin{aligned} \frac{\partial u}{\partial t} &= \epsilon^2\frac{\partial^2 u}{\partial x^2} + u(u-0.1)(1-u) - v + g \\ \frac{\partial v}{\partial t} &= hu + \gamma v + g \end{aligned}\]

where $u$ and $v$ are the state variables, $g$ is the control input, and $h$, $\gamma$, and $\epsilon$ are the parameters. Specifically, for this problem we assume the control input to begin

\[g(t) = \alpha t^3 \exp(-\beta t)\]

where $\alpha$ and $\beta$ are the parameters that are going to be varied for training.

Fields

  • spatial_domain::Tuple{Real,Real}: spatial domain
  • time_domain::Tuple{Real,Real}: temporal domain
  • alpha_input_param_domain::Tuple{Real,Real}: parameter domain
  • beta_input_param_domain::Tuple{Real,Real}: parameter domain
  • Δx::Real: spatial grid size
  • Δt::Real: temporal step size
  • BC::Symbol: boundary condition
  • IC::Array{Float64}: initial condition
  • IC_lift::Array{Float64}: initial condition
  • xspan::Vector{Float64}: spatial grid points
  • tspan::Vector{Float64}: temporal points
  • alpha_input_params::Union{Real,AbstractArray{<:Real}}: input parameter vector
  • beta_input_params::Union{Real,AbstractArray{<:Real}}: input parameter vector
  • spatial_dim::Int64: spatial dimension
  • time_dim::Int64: temporal dimension
  • param_dim::Dict{Symbol,<:Int}: parameter dimension
  • full_order_model::Function: full order model
  • lifted_finite_diff_model::Function: lifted finite difference model
source
PolynomialModelReductionDataset.FitzHughNagumo.full_order_modelMethod
full_order_model(k, l) → A, B, C, K, f

Create the full order operators with the nonlinear operator expressed as f(x).

Arguments

  • k::Int64: number of spatial grid points
  • l::Float64: spatial domain length

Returns

  • A::SparseMatrixCSC{Float64,Int64}: A matrix
  • B::SparseMatrixCSC{Float64,Int64}: B matrix
  • C::SparseMatrixCSC{Float64,Int64}: C matrix
  • K::SparseMatrixCSC{Float64,Int64}: K matrix
  • f::Function: nonlinear operator
source
PolynomialModelReductionDataset.FitzHughNagumo.integrate_modelMethod
integrate_model(tdata, u0)
integrate_model(tdata, u0, input; kwargs...)

Integrate the FitzHugh-Nagumo PDE model.

Arguments

  • tdata::AbstractVector{T}: time data
  • u0::AbstractVector{T}: initial condition
  • input::Union{AbstractArray{T},Function}: input function or matrix

Keyword Arguments

  • functional::Function: functional operator

Returns

  • u::Array{T,2}: state variables
source
PolynomialModelReductionDataset.FitzHughNagumo.lifted_finite_diff_modelMethod
lifted_finite_diff_model(k, l) → A, B, C, H, N, K

Generate the full order operators used for the intrusive model operators

Arguments

  • k::Int64: number of spatial grid points
  • l::Float64: spatial domain length

Returns

  • A::SparseMatrixCSC{Float64,Int64}: A matrix
  • B::SparseMatrixCSC{Float64,Int64}: B matrix
  • C::SparseMatrixCSC{Float64,Int64}: C matrix
  • H::SparseMatrixCSC{Float64,Int64}: H matrix
  • N::SparseMatrixCSC{Float64,Int64}: N matrix
  • K::SparseMatrixCSC{Float64,Int64}: K matrix
source