FitzHugh-Nagumo Equation
Overview
The Fitzhugh-Nagumo equation is a simplified mathematical model used to describe the behavior of excitable systems, particularly the dynamics of nerve cells or neurons. It was developed independently by Richard Fitzhugh and John Nagumo in the 1960s as a modification of the Hodgkin-Huxley model, aiming to capture the essential characteristics of action potential propagation.
The equation takes the form of a system of ordinary differential equations and consists of two main variables: a fast-recovery variable (usually denoted as v) and a slow-activating variable (usually denoted as w). The Fitzhugh-Nagumo equation is given by:
\[\begin{align*} \frac{dv}{dt} &= v - \frac{v^3}{3} - w + I \\ \frac{dw}{dt} &= \epsilon (v + a - bw) \end{align*}\]
where:
- $v$: represents the membrane potential of the neuron.
- $w$: represents a recovery variable related to the inactivation of ion channels.
- $I$: is an external input current that stimulates the neuron.
- $\epsilon$: is a positive parameter that controls the timescale separation between $v$ and $w$ dynamics.
- $a$ and $b$ are constants that affect the equilibrium points and behavior of the system.
The Fitzhugh-Nagumo model simplifies the complex behavior of neurons, focusing on the interplay between the fast-responding action potential and the slower recovery process. This simplification makes it easier to analyze and understand the fundamental mechanisms underlying excitable systems. The Fitzhugh-Nagumo equation has been widely used in the study of neuronal dynamics, cardiac rhythm modeling, and other excitable phenomena, providing insights into the generation and propagation of electrical signals in various biological and physical contexts.
Model
The Fitzhugh-Nagumo model can be modelled as a quadratic-bilinear system after a process called lifting
\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{H}(\mathbf{u}(t) \otimes \mathbf{u}(t)) + \mathbf{Bw}(t) + \mathbf{Nu}(t)\mathbf{w}(t) + \mathbf{K}\]
or
\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{F}(\mathbf{u}(t) \oslash \mathbf{u}(t)) + \mathbf{Bw}(t)+ \mathbf{Nu}(t)\mathbf{w}(t) + \mathbf{K}\]
where
- $\mathbf{u}\in\mathbb{R}^N$: the state vector
- $\mathbf{w}\in\mathbb{R}^m$: the input vector
- $\mathbf{A}\in\mathbb{R}^{N\times N}$: the linear state matrix
- $\mathbf{H}\in\mathbb{R}^{N\times N^2}$: the quadratic state matrix with redundancy
- $\mathbf{F}\in\mathbb{R}^{N\times N(N+1)/2}$: the quadratic state matrix without redundancy
- $\mathbf{B}\in\mathbb{R}^{N\times m}$: the control input matrix
- $\mathbf{N}\in\mathbb{R}^{N\times N}$: the bilinear matrix
- $\mathbf{K}\in\mathbb{R}^{N}$: the constant matrix
For full details on the model see The MORwiki Community [4] and Qian et al. [5].
Numerical Integration
The numerical integration is handled by standard forward Euler scheme.
Example
This example is a reproduction of the example in Qian et al. [5].
using CairoMakie
using Kronecker: ⊗
using LinearAlgebra
using PolynomialModelReductionDataset: FitzHughNagumoModel
# Setup
Ω = (0.0, 1.0); dt = 1e-4; Nx = 2^9
fhn = FitzHughNagumoModel(
spatial_domain=Ω, time_domain=(0.0,4.0), Δx=(Ω[2] - 1/Nx)/Nx, Δt=dt,
alpha_input_params=500, beta_input_params=10,
)
α = 500; β = 10
g(t) = α * t^3 * exp(-β * t)
U = g.(fhn.tspan)'
DS = 100 # downsample rate
# Operators
Af, Bf, Cf, Kf, f = fhn.full_order_model(fhn.spatial_dim, fhn.spatial_domain[2])
fom(x, u) = Af * x + Bf * u + f(x,u) + Kf
# Integrate
X = fhn.integrate_model(fhn.tspan, fhn.IC, g; functional=fom)[:, 1:DS:end]
# Plot solution
fig1 = Figure()
gp = fhn.spatial_dim
ax1 = Axis(fig1[1, 1], xlabel="t", ylabel="x", title="x1")
hm1 = CairoMakie.heatmap!(ax1, fhn.tspan[1:DS:end], fhn.xspan, X[1:gp, :]')
CairoMakie.Colorbar(fig1[1, 2], hm1)
ax2 = Axis(fig1[1, 3], xlabel="t", ylabel="x", title="x2")
hm2 = CairoMakie.heatmap!(ax2, fhn.tspan[1:DS:end], fhn.xspan, X[gp+1:end, :]')
CairoMakie.Colorbar(fig1[1, 4], hm2)
fig1

API
PolynomialModelReductionDataset.FitzHughNagumo.FitzHughNagumoModel
— Typemutable struct FitzHughNagumoModel <: AbstractModel
FitzHugh-Nagumo model
\[\begin{aligned} \frac{\partial u}{\partial t} &= \epsilon^2\frac{\partial^2 u}{\partial x^2} + u(u-0.1)(1-u) - v + g \\ \frac{\partial v}{\partial t} &= hu + \gamma v + g \end{aligned}\]
where $u$ and $v$ are the state variables, $g$ is the control input, and $h$, $\gamma$, and $\epsilon$ are the parameters. Specifically, for this problem we assume the control input to begin
\[g(t) = \alpha t^3 \exp(-\beta t)\]
where $\alpha$ and $\beta$ are the parameters that are going to be varied for training.
Fields
spatial_domain::Tuple{Real,Real}
: spatial domaintime_domain::Tuple{Real,Real}
: temporal domainalpha_input_param_domain::Tuple{Real,Real}
: parameter domainbeta_input_param_domain::Tuple{Real,Real}
: parameter domainΔx::Real
: spatial grid sizeΔt::Real
: temporal step sizeBC::Symbol
: boundary conditionIC::Array{Float64}
: initial conditionIC_lift::Array{Float64}
: initial conditionxspan::Vector{Float64}
: spatial grid pointstspan::Vector{Float64}
: temporal pointsalpha_input_params::Union{Real,AbstractArray{<:Real}}
: input parameter vectorbeta_input_params::Union{Real,AbstractArray{<:Real}}
: input parameter vectorspatial_dim::Int64
: spatial dimensiontime_dim::Int64
: temporal dimensionparam_dim::Dict{Symbol,<:Int}
: parameter dimensionfull_order_model::Function
: full order modellifted_finite_diff_model::Function
: lifted finite difference model
PolynomialModelReductionDataset.FitzHughNagumo
— ModuleFitz-Hugh Nagumo PDE model
PolynomialModelReductionDataset.FitzHughNagumo.full_order_model
— Methodfull_order_model(k, l) → A, B, C, K, f
Create the full order operators with the nonlinear operator expressed as f(x).
Arguments
k::Int64
: number of spatial grid pointsl::Float64
: spatial domain length
Returns
A::SparseMatrixCSC{Float64,Int64}
: A matrixB::SparseMatrixCSC{Float64,Int64}
: B matrixC::SparseMatrixCSC{Float64,Int64}
: C matrixK::SparseMatrixCSC{Float64,Int64}
: K matrixf::Function
: nonlinear operator
PolynomialModelReductionDataset.FitzHughNagumo.integrate_model
— Methodintegrate_model(tdata, u0)
integrate_model(tdata, u0, input; kwargs...)
Integrate the FitzHugh-Nagumo PDE model.
Arguments
tdata::AbstractVector{T}
: time datau0::AbstractVector{T}
: initial conditioninput::Union{AbstractArray{T},Function}
: input function or matrix
Keyword Arguments
functional::Function
: functional operator
Returns
u::Array{T,2}
: state variables
PolynomialModelReductionDataset.FitzHughNagumo.lifted_finite_diff_model
— Methodlifted_finite_diff_model(k, l) → A, B, C, H, N, K
Generate the full order operators used for the intrusive model operators
Arguments
k::Int64
: number of spatial grid pointsl::Float64
: spatial domain length
Returns
A::SparseMatrixCSC{Float64,Int64}
: A matrixB::SparseMatrixCSC{Float64,Int64}
: B matrixC::SparseMatrixCSC{Float64,Int64}
: C matrixH::SparseMatrixCSC{Float64,Int64}
: H matrixN::SparseMatrixCSC{Float64,Int64}
: N matrixK::SparseMatrixCSC{Float64,Int64}
: K matrix