Viscous Burgers' Equation

Overview

The viscous Burger's equation or viscous Bateman-Burger's equation is a second order PDE used widely in many fields as a simplified model, for example, fluid mechanics, acoustics, etc. The state $u(x,t)$ is a velocity field consisting of the spatial and temporal variables. The PDE is expressed as

\[u_t = \mu u_{xx} - uu_x\]

where

\[\begin{align} u_t &= \frac{\partial u(t,x)}{\partial t} \\ u_x &= \frac{\partial u(t,x)}{\partial x} \\ u_{xx} &= \frac{\partial^2 u(t,x)}{\partial x^2} \end{align}\]

for $x\in[0,L]$, and $\mu$ is the viscosity parameter.

Finite Difference Model

Let $k = \{1,2,3,\ldots,K\}$ and $n = \{0, 1,2,3,\ldots,N\}$. Further let $u^k_j$ indicate the state $u$ at the $k$-th discrete time and $n$-th discrete spatial point. With this discrete expression we can express $u_t$, $u_x$, and $u_{xx}$ as follows.

\[\begin{align} u_t &= \frac{\partial u(t_k,x_n)}{\partial t} = \frac{u^{k+1}_n - u^k_n}{\Delta t} + \mathcal{O}(\Delta t) \\ u_x &= \frac{\partial u(t_k,x_n)}{\partial t} = \frac{u^{k}_{n+1} - u^k_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x) \\ u_{xx} &= \frac{\partial^2 u(t_k,x_n)}{\partial x^2} = \frac{u^k_{n+1} - 2u^k_n + u^k_{n-1}}{\Delta x^2} + \mathcal{O}(\Delta x^2) \end{align}\]

For $u_t$ we use the standard first order finite difference, and for $u_{xx}$ we use the second order central finite difference and since we will implement the semi-implicit integration (backward Euler for only this term without the viscid term). Now, if we look carefully, we see that for $u_x$ we use the leap-frog finite difference where we jump from the $(n+1)$-th term to the $(n-1)$-th term. Plugging in the above expressions and with some abuse of notation we have

\[\begin{gather} u_t = \mu\frac{u^{k+1}_{n+1} - 2u^{k+1}_n + u^{k+1}_{n-1}}{\Delta x^2} - u_n^k \frac{u^k_{n+1} - u^k_{n-1}}{2\Delta x} \end{gather}\]

From this, we can form the system matrices, but keep in mind that for the Burger's equation we include the boundary conditions in the $A$ and $F$ matrix unlike the 1D heat equation example. This is because we see that the quadratic term also includes the $(n+1)$- and $(n-1)$-th term requiring the state vector to contain the terms from $u_0$ all the way to $u_{N+1}$. To deal with this, assuming constant time-step, we approximate the time derivative of the state variables corresponding to the boundary as

\[\begin{align} \dot u_0 &= \frac{u_0^{k+1} - u_0^k}{\Delta t} \\ \dot u_{N+1} &= \frac{u_{N+1}^{k+1} - u_{N+1}^k}{\Delta t} \end{align}\]

If we have Dirichlet boundary condition

\[u(0,t) = g(t), \qquad u(L,t) = h(t)\]

then

\[\begin{align} \dot u_0 &= \frac{1}{\Delta t}g(t_{k+1}) - \frac{1}{\Delta t}u_0^k \\ \dot u_{N+1} &= \frac{1}{\Delta t}h(t_{k+1}) - \frac{1}{\Delta t}u_{N+1}^k \end{align}\]

To accommodate for the time derivative terms of the boundary, we construct the linear system matrix and control matrix as follows:

\[\begin{gather} A = \frac{\mu}{\Delta x^2} \begin{bmatrix} \frac{\Delta x^2}{\mu}\left( -\frac{1}{\Delta t} \right) & 0 & 0 & 0 & 0 & \cdots & 0 & 0\\ 1 & -2 & 1 & 0 & 0 & \cdots & 0 & 0\\ 0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0\\ 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0\\ 0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots &\vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \frac{\Delta x^2}{\mu} \left( -\frac{1}{\Delta t} \right) \end{bmatrix} \end{gather}\]

and

\[\begin{gather} B = \begin{bmatrix} \frac{1}{\Delta t} & 0 \\[0.5em] 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\[0.5em] 0 & \frac{1}{\Delta t} \end{bmatrix} \end{gather}\]

In $A$, besides the first and last rows, we have a tridiagonal toeplitz matrix formed by the stencil $\{1,-2, 1\}$. However, the first and last rows of matrices $A$ and $B$ construct the finite difference at the boundaries.

The $F$ matrix, which is the quadratic operator without the non-redundancy from the symmetry of Kronecker products, is a bit tricky to wrap your mind around. So let's go through it with examples. First, let $u_n \in \mathbb{R}^3$ where $n = \{0,1,2\}$, then

\[\begin{gather} u^{(2)} = \begin{bmatrix} u_0^2 & u_1u_0 & u_2u_0 & u_1^2 & u_2u_1 & u_2^2 \end{bmatrix}^\top \end{gather}\]

and

\[\begin{gather} F = \frac{1}{2\Delta x} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{gather}\]

The first and last rows of $F$ are all zeros since the quadratic operator does not contribute to the boundary conditions, and the middle row have non-zero entries for the $u_nu_{n-1}$ and $u_nu_{n+1}$ terms where $n=1$ in this case. Similarly, for $u_n \in \mathbb{R}^4$ where $n = \{0,1,2,3\}$, then

\[\begin{gather} u^{(2)} = \begin{bmatrix} u_0^2 & u_1u_0 & u_2u_0 & u_3u_0 & u_1^2 & u_2u_1 & u_3u_1 & u_2^2 & u_3u_2 & u_3^2 \end{bmatrix}^\top \end{gather}\]

and

\[\begin{gather} F = \frac{1}{2\Delta x} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{gather}\]

where the first and last rows are zeros and the second and third rows have non-zero elements for the $u_nu_{n-1}$ and $u_nu_{n+1}$ terms. Note that the sequence which represents the row with nonzero entries in the $F$ matrix can be represented as

\[\begin{gather} \begin{cases} a_1 = 2 \\ a_{n+1} = a_n + N - n + 1 \end{cases} \end{gather}\]

where $N$ is the total number of variables, which leads to

\[\begin{gather} a_n = a_1 + \sum_{k=1}^{n-1}(N - k + 1) = 2 - \frac{1}{2}n(n-1) + (N+1)(n-1) \end{gather}\]

Thus the we arrive at a $N$-dimensional nonlinear ODE:

\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{F}(\mathbf{u}(t) \oslash \mathbf{u}(t)) + \mathbf{Bw}(t)\]

where $\mathbf{u}\in\mathbb{R}^N$, $\oslash$ indicates the unique Kronecker product which omits the redundant terms from the standard Kronecker product, and $\mathbf{w} = [g(t)~~h(t)]^\top \in \mathbb{R}^2$ is the input vector.

For numerical integration, we apply the semi-implicit Euler where the linear term is implicit and the quadratic and control terms are explicit. The time-stepping expression is defined by

\[\begin{gather} \mathbf{u}(t_{k+1}) = (\mathbf{I} - \Delta t \mathbf{A})^{-1}\left\{\mathbf{u}(t_k) + \Delta tF\left[\mathbf{u}(t_k) \oslash \mathbf{u}(t_k) \right] + \Delta t B\mathbf{w}(t_{k+1})\right\}. \end{gather}\]

You can follow the same procedure for the periodic, Neumann, mixed, and other boundary conditions, which I will leave as an exercise for you.

Conservativeness

For the periodic model, we consider 3 different models which are:

  • conservative form: $u_t = \mu u_{xx} + \nabla_x (\frac{1}{2}u^2)$
  • non-conservative form: $u_t = \mu u_{xx} + uu_x$
  • energy-preserving form which is a convex combination of the conservative and non-conservative forms with a weight of $1/3$ which preserves the energy of the system [2]

Example

The example below uses the settings from [1].

using CairoMakie
using LinearAlgebra
using PolynomialModelReductionDataset: BurgersModel

# Setup
Ω = (0.0, 1.0)
Nx = 2^7; dt = 1e-4
burgers = BurgersModel(
    spatial_domain=Ω, time_domain=(0.0, 1.0), Δx=(Ω[2] + 1/Nx)/Nx, Δt=dt,
    diffusion_coeffs=0.1, BC=:dirichlet,
)
Ubc = rand(burgers.time_dim) # boundary condition

# Model operators
A, F, B = burgers.finite_diff_model(burgers, burgers.diffusion_coeffs; opposite_sign_on_ends=true)

# Integrate
U = burgers.integrate_model(
    burgers.tspan, burgers.IC, Ubc;
    linear_matrix=A, control_matrix=B, quadratic_matrix=F,
    system_input=true
)

# Surface plot
fig1, _, sf = CairoMakie.surface(burgers.xspan, burgers.tspan, U,
    axis=(type=Axis3, xlabel=L"x", ylabel=L"t", zlabel=L"u(x,t)"))
CairoMakie.Colorbar(fig1[1, 2], sf)
fig1
Example block output
# Flow field
fig2, ax, hm = CairoMakie.heatmap(burgers.xspan, burgers.tspan, U)
ax.xlabel = L"x"
ax.ylabel = L"t"
CairoMakie.Colorbar(fig2[1, 2], hm)
fig2
Example block output

API

PolynomialModelReductionDataset.Burgers.BurgersModelType
mutable struct BurgersModel <: AbstractModel

Viscous Burgers' equation model

\[\frac{\partial u}{\partial t} = \mu\frac{\partial^2 u}{\partial x^2} - u\frac{\partial u}{\partial x}\]

Fields

  • spatial_domain::Tuple{Real,Real}: spatial domain
  • time_domain::Tuple{Real,Real}: temporal domain
  • param_domain::Tuple{Real,Real}: parameter domain
  • Δx::Real: spatial grid size
  • Δt::Real: temporal step size
  • BC::Symbol: boundary condition
  • IC::Array{Float64}: initial condition
  • xspan::Vector{Float64}: spatial grid points
  • tspan::Vector{Float64}: temporal points
  • diffusion_coeffs::Union{Real,AbstractArray{<:Real}}: parameter vector
  • spatial_dim::Int64: spatial dimension
  • time_dim::Int64: temporal dimension
  • param_dim::Int64: parameter dimension
  • conservation_type::Symbol: conservation type
  • finite_diff_model::Function: model using Finite Difference
  • integrate_model::Function: model integration

Note

  • The conservation type can be either :EP (Energy Preserving), :NC (Non-Conservative), or :C (Conservative).
source
PolynomialModelReductionDataset.Burgers.integrate_modelMethod
integrate_model(tdata, u0)
integrate_model(tdata, u0, input; kwargs...)

Integrate the viscous Burgers' equation model

Arguments

  • tdata::AbstractArray{T}: time data
  • u0::AbstractArray{T}: initial condition
  • input::AbstractArray{T}=[]: input data

Keyword Arguments

  • linear_matrix::AbstractArray{T}: linear matrix
  • quadratic_matrix::AbstractArray{T}: quadratic matrix
  • control_matrix::AbstractArray{T}=[]: control matrix
  • system_input::Bool=false: system input flag
  • integrator_type::Symbol=:ForwardEuler: integrator type
  • same_on_both_ends::Bool=false: same (Dirichlet) boundary condition on both ends
  • opposite_sign_on_ends::Bool=true: opposite sign (Dirichlet) boundary condition on both ends

Returns

  • u::Array{T,2}: integrated model states

Notes

  • Input is assumed to be a matrix of size (spatial dimension x time dimension). You will receive a warning if the input is a tall vector/column vector.
source