Allen-Cahn equation
Overview
The Allen-Cahn equation is a fundamental partial differential equation (PDE) in the field of mathematical physics and materials science. Introduced by Samuel Allen and John W. Cahn in 1979, it models the process of phase separation in multi-component alloy systems, particularly the evolution of interfaces between different phases in a material.
The Allen-Cahn equation is typically written as:
\[u_t = \Delta u - F'(u)\]
- $u(x,t)$: represents a scalar field, often associated with the order parameter or concentration difference between two phases at position $x$ and time $t$.
- $\Delta$: denotes the Laplacian operator, representing diffusion in space.
- $F(u)$: A double-well potential function, commonly chosen as $F(u) = \frac{1}{4}(u^2 - 1)^2$. The derivative $F'(u)=u^3-u$ represents the reaction term driving the phase separation.
Physical Interpretation
- Phase Separation: the equation models how a homogeneous mixture evolves into distinct phases over time, a process driven by minimization of the system's free energy.
- Interface Dynamics: it describes the motion of interfaces (or domain walls) between different phases, influenced by surface tension and curvature effects.
Some properties
Gradient Flow: the Allen-Cahn equation is the $L_2$-gradient flow of the Ginzburg-Landau energy functional:
\[E(u) = \int \left( \frac{1}{2}|\nabla u|^2 + F(u) \right)dx\]
This means the evolution of $u$ seeks to decrease the energy $E(u)$ over time.
Connection to Mean Curvature Flow: in the sharp interface limit (when the interface thickness tends to zero), the motion of the interface approximates mean curvature flow. This links the Allen-Cahn equation to geometric PDEs and has significant implications in differential geometry.
Metastability: the equation exhibits metastable behavior, where solutions can remain in unstable equilibrium states for extended periods before transitioning to a stable configuration.
Model
The Allen-Cahn equation becomes a cubic model:
\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{G}(\mathbf{u}(t) \otimes \mathbf{u}(t) \otimes \mathbf{u}(t)) + \mathbf{Bw}(t)\]
or
\[\dot{\mathbf{u}}(t) = \mathbf{Au}(t) + \mathbf{E}(\mathbf{u}(t) \oslash \mathbf{u}(t) \oslash \mathbf{u}(t)) + \mathbf{Bw}(t)\]
where
- $\mathbf{u}\in\mathbb{R}^N$: the state vector
- $\mathbf{w}\in\mathbb{R}^m$: the input vector
- $\mathbf{A}\in\mathbb{R}^{N\times N}$: the linear state matrix
- $\mathbf{G}\in\mathbb{R}^{N\times N^3}$: the cubic state matrix with redundancy
- $\mathbf{E}\in\mathbb{R}^{N\times N(N+1)(N+2)/6}$: the cubic state matrix without redundancy
- $\mathbf{B}\in\mathbb{R}^{N\times m}$: the control input matrix
Numerical Integration
For the numerical integration we consider two methods:
- Semi-Implicit Crank-Nicolson (SICN)
- Crank-Nicolson Adam-Bashforth (CNAB)
The time stepping for each methods are
SICN:
\[\mathbf{u}(t_{k+1}) = \left(\mathbf{I}-\frac{\Delta t}{2}\mathbf{A}\right)^{-1} \left\{ \left( \mathbf{I} + \frac{\Delta t}{2}\mathbf{A} \right)\mathbf{u}(t_k) + \Delta t\mathbf{E}\mathbf{u}^{\langle 3\rangle}(t_k) + \frac{\Delta t}{2} \mathbf{B}\left[ \mathbf{w}(t_{k+1}) + \mathbf{w}(t_k) \right]\right\}\]
CNAB:
If $k=1$
\[\mathbf{u}(t_{k+1}) = \left(\mathbf{I}-\frac{\Delta t}{2}\mathbf{A}\right)^{-1} \left\{ \left( \mathbf{I} + \frac{\Delta t}{2}\mathbf{A} \right)\mathbf{u}(t_k) + \Delta t\mathbf{E}\mathbf{u}^{\langle 3\rangle}(t_k) + \frac{\Delta t}{2} \mathbf{B}\left[ \mathbf{w}(t_{k+1}) + \mathbf{w}(t_k) \right]\right\}\]
If $k\geq 2$
\[\mathbf{u}(t_{k+1}) = \left(\mathbf{I}-\frac{\Delta t}{2}\mathbf{A}\right)^{-1} \left\{ \left( \mathbf{I} + \frac{\Delta t}{2}\mathbf{A} \right)\mathbf{u}(t_k) + \frac{3\Delta t}{2}\mathbf{E}\mathbf{u}^{\langle 3\rangle}(t_k) - \frac{\Delta t}{2}\mathbf{E}\mathbf{u}^{\langle 3\rangle}(t_{k-1}) + \frac{\Delta t}{2} \mathbf{B}\left[ \mathbf{w}(t_{k+1}) + \mathbf{w}(t_k) \right]\right\}\]
where $\mathbf{u}^{\langle 3 \rangle}=\mathbf{u} \oslash \mathbf{u} \oslash \mathbf{u}$.
!!! Note Please go over the derivations in 1D heat equation and Viscous Burgers' equation for details on how to construct each operators.
Example
using CairoMakie
using LinearAlgebra
using PolynomialModelReductionDataset: AllenCahnModel
# Setup
Ω = (-1.0, 1.0)
T = (0.0, 3.0)
Nx = 2^8
dt = 1e-3
allencahn = AllenCahnModel(
spatial_domain=Ω, time_domain=T, Δx=((Ω[2]-Ω[1]) + 1/Nx)/Nx, Δt=dt,
params=Dict(:μ => 0.001, :ϵ => 1.0), BC=:dirichlet
)
DS = 10
allencahn.IC = 0.53*allencahn.xspan + 0.47*sin.(-1.5π * allencahn.xspan)
Ubc1 = ones(1,allencahn.time_dim)
Ubc2 = -ones(1,allencahn.time_dim)
Ubc = [Ubc1; Ubc2]
# Operators
A, E, B = allencahn.finite_diff_model(allencahn, allencahn.params)
# Integrate
U = allencahn.integrate_model(
allencahn.tspan, allencahn.IC, Ubc;
linear_matrix=A, cubic_matrix=E, control_matrix=B,
system_input=true, integrator_type=:CNAB,
)
# Surface plot
fig3, _, sf = CairoMakie.surface(allencahn.xspan, allencahn.tspan[1:DS:end], U[:, 1:DS:end],
axis=(type=Axis3, xlabel=L"x", ylabel=L"t", zlabel=L"u(x,t)"))
CairoMakie.Colorbar(fig3[1, 2], sf)
fig3

# Flow field
fig4, ax, hm = CairoMakie.heatmap(allencahn.xspan, allencahn.tspan[1:DS:end], U[:, 1:DS:end])
ax.xlabel = L"x"
ax.ylabel = L"t"
CairoMakie.Colorbar(fig4[1, 2], hm)
fig4

API
PolynomialModelReductionDataset.AllenCahn.AllenCahnModel
— Typemutable struct AllenCahnModel <: AbstractModel
Allen-Cahn equation Model
\[\frac{\partial u}{\partial t} = \mu\frac{\partial^2 u}{\partial x^2} - \epsilon(u^3 - u)\]
where $u$ is the state variable, $μ$ is the diffusion coefficient, $ϵ$ is a nonlinear coefficient.
Fields
spatial_domain::Tuple{Real,Real}
: spatial domaintime_domain::Tuple{Real,Real}
: temporal domainparam_domain::Tuple{Real,Real}
: parameter domain (diffusion coeff)Δx::Real
: spatial grid sizeΔt::Real
: temporal step sizeparams::Dict{Symbol,Union{Real,AbstractArray{<:Real}}}
: parametersxspan::Vector{<:Real}
: spatial grid pointstspan::Vector{<:Real}
: temporal pointsspatial_dim::Int
: spatial dimensiontime_dim::Int
: temporal dimensionparam_dim::Int
: parameter dimensionIC::AbstractArray{<:Real}
: initial conditionBC::Symbol
: boundary conditionfinite_diff_model::Function
: model using Finite Differenceintegrate_model::Function
: integrator using Crank-Nicholson (linear) Explicit (nonlinear) method
PolynomialModelReductionDataset.AllenCahn
— ModuleAllen-Cahn equation PDE Model
PolynomialModelReductionDataset.AllenCahn.finite_diff_dirichlet_model
— Methodfinite_diff_dirichlet_model(N, Δx, params)
PolynomialModelReductionDataset.AllenCahn.finite_diff_mixed_model
— Methodfinite_diff_mixed_model(N, Δx, params)
Create the matrices A (linear operator), B (input operator), and E (cubic operator) for Chafee-Infante model using the mixed boundary condition. If the spatial domain is [0,1], then we assume u(0,t) to be homogeneous dirichlet boundary condition and u(1,t) to be Neumann boundary condition of some function h(t).
Arguments
N::Real
: spatial dimensionΔx::Real
: spatial grid sizeparams::Dict
: parameters
Returns
A::SparseMatrixCSC{Float64,Int}
: linear operatorB::SparseMatrixCSC{Float64,Int}
: input operatorE::SparseMatrixCSC{Float64,Int}
: cubic operator
PolynomialModelReductionDataset.AllenCahn.finite_diff_model
— Methodfinite_diff_model(model, params)
Create the matrices A (linear operator) and E (cubic operator) for the Allen-Cahn model.
Arguments
model::AllenCahnModel
: Allen-Cahn modelparams::Dict
: parameters dictionary
PolynomialModelReductionDataset.AllenCahn.finite_diff_periodic_model
— Methodfinite_diff_periodic_model(N, Δx, params)
Create the matrices A (linear operator) and E (cubic operator) for the Chafee-Infante model.
Arguments
N::Real
: spatial dimensionΔx::Real
: spatial grid sizeparams::Dict
: parameters
Returns
A::SparseMatrixCSC{Float64,Int}
: linear operatorE::SparseMatrixCSC{Float64,Int}
: cubic operator
PolynomialModelReductionDataset.AllenCahn.integrate_model
— Methodintegrate_model(tdata, u0)
integrate_model(tdata, u0, input; kwargs...)
Integrate the Allen-Cahn model using the Crank-Nicholson (linear) Adam-Bashforth (nonlinear) method (CNAB) or Semi-Implicit Crank-Nicolson (SICN) method.
Arguments
tdata::AbstractArray{T}
: time datau0::AbstractArray{T}
: initial conditioninput::AbstractArray{T}=[]
: input data
Keyword Arguments
linear_matrix::AbstractArray{T,2}
: linear matrixcubic_matrix::AbstractArray{T,2}
: cubic matrixcontrol_matrix::AbstractArray{T,2}
: control matrixsystem_input::Bool=false
: system input flagconst_stepsize::Bool=false
: constant step size flagu3_jm1::AbstractArray{T}=[]
: previous cubic term
Returns
x::Array{T,2}
: integrated model states
Notes
- If
system_input
is true, thencontrol_matrix
must be provided. - If
const_stepsize
is true, then the time step size is assumed to be constant. - If
u3_jm1
is provided, then the cubic term at the previous time step is used. integrator_type
can be either:SICN
for Semi-Implicit Crank-Nicolson or:CNAB
for Crank-Nicolson Adam-Bashforth
PolynomialModelReductionDataset.AllenCahn.integrate_model_with_control_CNAB
— Methodintegrate_model_with_control_CNAB(
tdata,
u0,
input;
linear_matrix,
cubic_matrix,
control_matrix,
const_stepsize,
u3_jm1
)
Integrate the Allen-Cahn model using the Crank-Nicholson (linear) Adam-Bashforth (nonlinear) method (CNAB) with control.
PolynomialModelReductionDataset.AllenCahn.integrate_model_with_control_SICN
— Methodintegrate_model_with_control_SICN(
tdata,
u0,
input;
linear_matrix,
cubic_matrix,
control_matrix,
const_stepsize
)
Integrate the Allen-Cahn model using the Crank-Nicholson (linear) Explicit (nonlinear) method. Or Semi-Implicit Crank-Nicholson (SICN) method with control input.
PolynomialModelReductionDataset.AllenCahn.integrate_model_without_control_CNAB
— Methodintegrate_model_without_control_CNAB(
tdata,
u0;
linear_matrix,
cubic_matrix,
const_stepsize,
u3_jm1
)
Integrate the Allen-Cahn model using the Crank-Nicholson (linear) Adam-Bashforth (nonlinear) method (CNAB) without control.
PolynomialModelReductionDataset.AllenCahn.integrate_model_without_control_SICN
— Methodintegrate_model_without_control_SICN(
tdata,
u0;
linear_matrix,
cubic_matrix,
const_stepsize
)
Integrate the Allen-Cahn model using the Crank-Nicholson (linear) Explicit (nonlinear) method. Or, in other words, Semi-Implicit Crank-Nicholson (SICN) method without control.